Закономерное наследование признаков

Закономерности наследования. Моногибридное скрещивание

Как вы думаете, почему Г Менделю удалось установить закономерности наследования задолго до становления генетики как науки?

План эксперимента. Закономерности наследования признаков организма были установлены Г. Менделем. Этому способствовал правильно выстроенный план эксперимента: подбор материала для опытов, продуманная схема скрещиваний, математический анализ полученных результатов. Именно количественный подсчет гибридов дал Менделю аргументы для обоснования идеи дискретности наследственных факторов (позднее названных генами). Наследственные факторы (гены) дискретны, т. е. они не сливаются, не смешиваются.

Гениальное объединение биологического эксперимента и математического анализа позволило Менделю открыть новый мир многообразных и сложных явлений. Разработанный им метод получил название гибридологического анализа.

Мендель (в отличие от своих предшественников) брал во внимание не весь комплекс разнообразных признаков у родителей и их потомков, а учитывал и анализировал наследование только отдельных парных, альтернативных признаков.

Успех работы был также обеспечен тем, что он выбрал весьма удачный объект исследования – горох, имеющий много разновидностей, отличающихся альтернативными признаками (рис. 53).
Рис. 53. Пары альтернативных признаков у гороха
Прежде чем начать опыты, Г. Мендель тщательно проверил чистосортность – гомозиготность материала. Для этого он все сорта гороха высевал в течение нескольких лет и, убедившись в однородности материала, приступил к экспериментам. В своей работе Г. Мендель применил метод гибридизации (от лат. hibrida – помесь) – скрещивание особей, относящихся к разным сортам (породам, видам, родам) растений (или животных). Он использовал разные расы гороха, которые отличались по одной или двум парам признаков (например, по окраске или форме семян), и получал гибриды – потомство от скрещивания двух генетически различающихся организмов.

Для обозначения родительских форм и наследственных признаков при гибридизации Г. Мендель разработал свою особую символику:

P (от лат. parentes – родитель) – родительские организмы, взятые для скрещивания, отличающиеся наследственными признаками;

F (от лат. fillius – поколение) – гибридное потомство;

F1 – первое поколение; F2 – второе поколение и т. д.

Символом ♂ (щит Марса) Мендель обозначил мужские организмы, символом ♀ (зеркало Венеры) – женские организмы.

Закономерности наследования при моногибридном скрещивании. Скрещивание особей, отличающихся друг от друга по двум вариантам одного и того же признака, называется моногибридным скрещиванием. Для моногибридного скрещивания Г. Мендель выбирал растения гороха, четко различающиеся по какому-либо признаку, например по окраске семян (желтой или зеленой). Семена этих растений ученый высевал на протяжении ряда поколений и убедился, что они размножаются «в чистоте», т. е. без расщепления потомства: растения, выращенные из желтых семян, давали только желтые семена, а растения, выращенные из зеленых семян – зеленые. Затем он скрещивал растения этих чистых линий между собой, и во всех случаях полученные гибриды первого поколения (F1) имели лишь желтые семена. Признак, проявляющийся у гибридов первого поколения (F1), Мендель назвал доминантным, а не проявляющийся – рецессивным.

На основе анализа гибридов первого поколения Г. Мендель сформулировал привило единообризия гибридов первого поколения: в первом поколении гибридов проявляется только доминантный признак.

Моногибридное скрещивание схематично проиллюстрировано на рис. 54.
Рис. 54. Схема, отражающая закономерности наследования при моногибридном скрещивании
Из схемы видно, что родительские особи гороха в результате мейоза образовали гаметы. У одной из родительских особей по интересующему нас признаку – окраске семян – образовались гаметы, несущие ген A, у другой особи – гаметы с геном a. Слияние разнополых гамет при оплодотворении обусловило появление зигот с генотипом Aa. Генотип (от греч. typos – форма) – совокупность всех генов, локализованных в хромосомах данного организма. Все растения (гибриды первого поколения – F1) имели только желтые семена. Иными словами, у гибридов первого поколения был одинаковый фенотип (от греч. phaino – являю, typos – форма) – совокупность всех признаков и свойств организма, сложившихся в процессе индивидуального развития генотипа во взаимодействии с условиями окружающей среды.
Затем Г. Мендель дал возможность гибридам первого поколения (F1) самоопылиться и получил второе поколение гибридов (F2), у которого обнаружилось расщепление по окраске семян: три части гибридов имели желтые семена, одна часть – зеленые.

Г. Мендель по анализу полученных результатов сформулировал закон расщепления: в потомстве, полученном при самоопылении гибридов первого поколения, наблюдается расщепление – 1/4 особей из гибридов второго поколения (F2) имеет рецессивный признак, 3/4 – доминантный.

Цитологические основы закона расщепления. Чтобы понять цитологические основы закона расщепления, нужно иметь в виду, что гомологичные хромосомы (см. § 10) имеют идентичные участки – гены, которые определяют развитие одного и того же признака (рис. 55). Такие гены называются аллельными генами (аллелями).
Рис. 55. Схема, отражающая гипотезу чистоты гамет
В клетке или организме, точнее, в их гомологичных хромосомах, может быть пара аллельных генов, определяющих развитие только доминантного признака (AA) или развитие только рецессивного признака (aa), а могут быть и разные аллельные гены (Aa).

Клетка или организм, гомологичные хромосомы которых несут одинаковые аллели данного гена, называется гомозиготой (по данному признаку). Гомозиготы (AA и aa) по данному гену образуют только один вид (сорт) гамет: AA → A.

Клетка или организм, гомологичные хромосомы которых несут разные аллели данного гена (Aa), называется гетерозиготой. Гетерозиготы по данному гену образуют разные виды (сорта) гамет: Aa → A, a.

Цитологические основы закона расщепления можно проиллюстрировать схемой (см. рис. 54).

Гипотеза чистоты гамет. Для объяснения полученного расщепления Г. Мендель предложил гипотезу чистоты гамет, согласно которой половые клетки (гаметы) несут только по одному аллелю каждого из признаков и свободны (чисты) от других аллелей этого признака. Гибрид дает разные виды «чистых» гамет. Напомним, что они несут только один ген из каждой пары аллельных генов. Случайное слияние при оплодотворении разных видов гамет приводит к появлению комбинаций генов у гибридов второго поколения (F2) и, следовательно, расщеплению признаков.

Цитологическое обоснование гипотеза чистоты гамет получила в XX в. Оно базируется на анализе поведения гомологичных хромосом во время мейоза (см. § 18). В гомологичных хромосомах находятся аллельные гены (рис. 55). Поскольку гомологичные хромосомы в анафазе первого деления мейоза расходятся и попадают в разные клетки, то и аллельные гены оказываются в разных гаметах, т. е. гаметы действительно «чистые», так как не содержат парных аллелей. Вероятность встреч при оплодотворении мужских и женских половых клеток с доминантными и рецессивными аллелями равная. Поэтому случайный характер соединения гамет при оплодотворении в результате оказывается закономерным.

Вопросы и задание

  1. В чем особенности метода гибридологического анализа?
  2. Почему выбор гороха в качестве объекта обусловил успех опытов Г. Менделя?
  3. Какое значение для исследований Г. Менделя имел количественный анализ?
  4. Сформулируйте правило единообразия гибридов первого поколения.
  5. Дайте цитологическое обоснование правилу единообразия гибридов первого поколения.
  6. В чем суть закона расщепления? В каком соотношении происходит расщепление у гибридов второго поколения по генотипу; по фенотипу?
  7. Возможно ли существование гетерозиготных особей, если у них доминантный фенотип?
  8. Возможно ли существование гетерозиготных особей, если у них рецессивный фенотип?

Закономерности наследования признаков, установленные Г. Менеделем

Гипермаркет знаний>>Биология>>Биология 9 класс>> Закономерности наследования признаков, установленные Г. Менделем

Закономерности наследования признаков, установленные Г. Менделем.

1. У каких организмов только одна кольцевая хромосома?
2. Что такое гибрид?


Генетика — наука, изучающая закономерности наследственности и изменчивости живых организмов.

Наследственность — это свойство всех живых организмов передавать свои признаки и свойства из поколения в поколение.

Изменчивость — свойство всех живых организмов приобретать в процессе индивидуального развития новые признаки. Элементарные единицы наследственности — гены — представляют собой участки ДНК хромосом.

Закономерности, по которым признаки передаются из поколения в поколение, первым открыл великий чешский ученый Грегор Мендель (1822—1884). Грегор Мендель в 25 лет стал монахом, уже после этого он прослушал курс математики и естественных наук в Венском университете. Позднее, с 1868 г., он был настоятелем августинского монастыря в чешском городе Брно и одновременно преподавал в школе естественную историю и физику. В течение многих лет Мендель как ботаник-любитель проводил опыты в монастырском саду и в 1865 г. опубликовал работу «Опыты над растительными гибридами», в которой изложил основные законы наследственности.

Основой замечательной работы Г. Менделя был так называемый гибридологический метод. Суть этого метода заключается в скрещивании (гибридизации) организмов, отличающихся друг от друга какими-либо признаками, и в последующем анализе характера наследования этих признаков у потомства. Гибридологический метод до сих пор лежит в основе исследований всех генетиков.

Ставя опыты, Мендель придерживался нескольких правил.

Во-первых, работая с садовым горохом, он использовал лля скрещивания растения, которые относились к различным сортам. Так, например, у одного сорта горошины всегда были желтые, а у другого — всегда зеленые. Так как горох самоопыляемое растение, то в природных условиях эти сорта не смешиваются. Такие сорта называют чистыми линиями.

Смотрите так же:  Статья 205 ук состав

Во-вторых, чтобы получить больше материала для анализа законов наследственности, Мендель работал не с одной, а с несколькими родительскими парами гороха.

В-третьих, Мендель намеренно упростил задачу, наблюдая за наследованием не всех признаков гороха сразу, а только одной их пары. Для своих опытов он изначально выбрал пвет семян гороха — горошин. В тех случаях, когда родительские организмы различаются лишь по одному признаку например, только по цвету семян или только по форме семян), скрещивание называют моногибридным.

В-четвертых, имея математическое образование, Мендель применил для обработки данных количественные методы: он не просто замечал, каков цвет семян гороха у потомства, но и точно подсчитывал, сколько таких семян появилось.

Надо добавить, что Мендель очень удачно выбрал для опытов горох. Горох легко выращивать, в условиях Чехии он размножается несколько раз в год, сорта гороха отличаются пруг от друга рядом хорошо заметных признаков, и, наконец, з природе горох самоопыляем, но в эксперименте это самоопыление легко предотвратить, и экспериментатор может опылять растение пыльцой с другого растения, т. е. перекрестно.

Если пользоваться терминами, появившимися через много лет после работ Менделя, то можно сказать, что клетки растений гороха одного сорта содержат по два гена только желтой окраски, а гены растений другого сорта — по два гена только зеленой окраски. Гены, ответственные за развитие одного признака (например, цвета семян), получили название аллелъных генов. Если организм содержит два одинаковых аллельных гена (например, оба гена зеленого цвета :емян или, наоборот, оба гена желтизны семян), то такие организмы называют гомозиготными. Если же аллельные гены различны (т. е. один из них определяет желтую, а другой — зеленую окраску семян), то такие организмы называют гетерозиготными. Чистые линии образованы гомозиготными растениями, поэтому при самоопылении они всегда воспроизводят один вариант проявления признака. В опытах Менделя это был один из двух возможных цветов семян гороха — или всегда желтый, или всегда зеленый.

(Не будем забывать, что в те годы, когда Мендель ставил свои эксперименты, о генах, хромосомах, митозе и мейозе не было известно ничего!)

Единообразие гибридов первого поколения. Искусственно скрещивая растения гороха с желтыми горошинами с растениями, имеющими зеленые горошины (т. е. проводя моногибридное скрещивание), Мендель убедился, что все семена потомков-гибридов будут желтого цвета. Такое же явление он наблюдал в опыте при скрещивании растений с гладкими и морщинистыми семенами — все гибридные растения имели гладкие семена.

Проявляющийся у гибридов признак (желтизну семян или гладкость семян) Мендель назвал доминантным, а подавляемый признак (т. е. зеленый цвет семян или морщинистость семян) — рецессивным. Доминантный признак принято обозначать большой буквой (А, В, С), а рецессивный — маленькой (а, в, с).

На основании этих данных Мендель сформулировал правило единообразия гибридов первого поколения: при скрещивании двух гомозиготных организмов, отличающихся друг от друга одним признаком, все гибриды первого поколения будут иметь признак одного из родителей, и поколение по данному признаку будет единообразным.
Из семян, полученных в первом поколении, Мендель вырастил растения гороха и снова скрестил их между собой. У растений второго поколения большинство горошин были желтого цвета, но встречались и зеленые горошины. Всего от нескольких скрещиваемых пар растений Мендель получил 6022 желтых и 2001 зеленых горошин. Легко сосчитать, чтс 3/4 гибридных семян имели желтую окраску и ¼ зеленую. Явление, при котором скрещивание приводит к образованию потомства частично с доминантными, частично с рецессивными признаками, получило название расщепления.

Опыты с другими признаками подтвердили эти результаты, и Мендель сформулировал правило расщепления: при скрещивании двух потомков (гибридов) первого поколения между собой во втором поколении наблюдается расщепление и снова появляются особи с рецессивными признаками; эти особи составляют одну четвертую часть от всего числа потомков второго поколения.

Закон чистоты гамет. Для объяснения тех фактов, которые легли в основу правила единообразия гибридов первого поколения и правила расщепления, Г. Мендель предположил, что «элементов наследственности» (генов) в каждой соматической клетке по два. В клетках гибрида первого поколения, хотя они и имеют только желтые горошины, обязательно должны присутствовать оба «элемента» (и желтого, и зеленого цветов), иначе у гибридов второго поколения не может возникнуть горошин зеленого цвета. Связь между поколениями обеспечивается через половые клетки — гаметы. Значит, каждая гамета получает только один «элемент наследственности» (ген) из двух возможных — «желтый» или зеленый». Эту гипотезу Менделя о том, что при образовании гамет в каждую из них попадает только один из двух аллельных генов, называют законом чистоты гамет.

Из опытов Г. Менделя по моногибридному скрещиванию, помимо закона чистоты гамет, следует также, что гены передаются из поколения в поколение не меняясь. Иначе невозможно объяснить тот факт, что в первом поколении после скрещивания гомозигот с желтыми и зелеными горошинами все семена были желтые, а во втором поколении снова появились зеленые горошины. Следовательно, ген «зеленого цвета горошин» не исчез и не превратился в ген «желтого цвета горошин», а просто не проявился в первом поколении, подавленный доминантным геном желтизны.

Как же объяснить закономерности генетики с позиций современной науки?

Цитологические основы закономерностей наследования при моногибридном скрещивании. Изобразим моногибридное скрещивание в виде схемы. Символ 0 обозначает женскую особь, символ 0 мужскую, х — скрещивание, Р — родительское поколение, F1— первое поколение потомков, F2— второе поколение потомков, А — ген, отвечающий за доминантный желтый цвет, а — ген, отвечающий за рецессивный зеленый цвет семян гороха (рис. 50).

Из рисунка видно, что в каждой гамете родительских особей будет по одному гену (вспомните мейоз): в одном случае А, в другом — а. Таким образом, в первом поколении все соматические клетки будут гетерозиготными — Аа. В свою счередь, гибриды первого поколения с равной вероятностью могут образовывать гаметы А или а.

Случайные комбинации этих гамет при половом процессе могут дать следующие варианты: АА, Аа, аА, аа. Первые три растения, содержащие ген А, по правилу доминирования будут иметь желтые горошины, а четвертое — рецессивная гомозигота аа —- будет иметь зеленые горошины.

Гибридологический метод. Чистые линии. Моногибридные скрещивания. Аллельные гены. Гомозиготные и гетерозиготные организмы. Доминантные и рецессивные признаки. Расщепление. Закон чистоты гамет.

1. Каких правил придерживался Г. Мендель при проведении своих опытов?
2. Почему для опытов Г. Менделя был удачным выбор гороха?
3. Какие гены называются аллельными?
4. Чем гомозиготный организм отличается от гетерозиготного?
5. В чем суть гибридологического метода?
6. Сформулируйте закон чистоты гамет.
7. Что такое моногибридное скрещивание?
8. Какой признак называется доминантным? рецессивным?
9. В чем суть правила единообразия гибридов первого поколения? Проиллюстрируйте своё ответ схемой.
10. Сформулируйте правило расщепления. Нарисуйте схему скрещивания гибридов первого поколения.

Каменский А. А., Криксунов Е. В., Пасечник В. В. Биология 9 класс
Отправлено читателями с интернет-сайта

Онлайн библиотека с учениками и книгами, плани-конспекти уроков с Биологии 9 класса, книги и учебники согласно календарного плана планирование Биологии 9 класса

Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь — Образовательный форум.

Закономерности наследование признаков человека

Главная > Контрольная работа >Биология

Закономерности наследование признаков человека

Основные закономерности наследования признаков в поколениях были открыты чешским исследователем Г. Менделем, опубликовавшим в 1866 году «Опыты над растительными гибридами». Статья не привлекла внимания современников. Только через 35 лет законы наследования были вновь «открыты» сразу тремя ботаниками – К. Корренсом, Э. Чермаком и Г. де Фризом, быстро завоевав всеобщее признание. С 1900года, когда были переоткрыты законы Г. Менделя, начался научный период генетики.

Наследственность – это свойство организма воспроизводить себе подобное, преемственность в поколениях.

Наследование – процесс передачи генетической информации от одного поколения к другому.

В первых опытах Г. Мендель принимал во внимание только одну пару признаков. Такое скрещивание носит название моногибридного. После анализа результатов скрещивания гороха, Г. Мендель сформулировал основные закономерности наследования признаков:

Закон доминирования или закон единообразия гибридов первого поколения. При скрещивании особей отличающихся друг от друга одному признаку, в первом поколении гибридов получаются потомки, схожие только с одним из родителей. Соответствующий признак другого родителя не проявляется. Проявившийся в первом поколении гибридов признак называется доминантным, а непроявившийся – рецессивным.

Закон расщепления гибридов 2-го поколения описывает появление во втором поколении гибридов особей с доминантными и рецессивными признаками в соотношении 3:1. Введены буквенные символы: Р – родительские организмы, F1 – первое поколение гибридов, F2 – второе поколение, полученное от скрещивания особей первого поколения между собой. А – доминантный признак, а — рецессивный признак, или ген. Соответствующие друг другу гены называются аллельными. Аллель – одна из двух и более альтернативных форм гена, имеющая определенную локализацию в хромосоме и уникальную последовательность нуклеотидов. Организмы, имеющие либо два доминантных (АА), либо два рецессивных (аа) аллеля, называются гомозиготными. Всё их потомство (F1) будет нести как ген доминантного, так и ген рецессивного признака, т.е. будет гетерозиготным.

Смотрите так же:  Страховка при выезде за границу минск

Генотипом называют совокупность генов, характеризующую данный организм.

Фенотип – это совокупность признаков, проявляющихся в результате действия генов в определенных условиях среды.

Дигибридным называется скрещивание, отличающееся по двум (или нескольким) разным признакам.

Закон независимого наследования признаков: при дигибридных и полигибридных скрещиваниях гибридов каждая пара признаков наследуется независимо друг от друга и может независимо комбинироваться с другими признаками.

Менделирование – наследование определенного признака (болезни) в соответствии с законами Г. Менделя. Менделирующими признаками называют те, наследование которых происходит по закономерностям, установленным Г. Менделем. Менделевские законы справедливы для аутосомных генов. Если гены локализованы в половых хромосомах, или в одной хромосоме сцепленно, то результаты скрещивания не будут следовать законам Г. Менделя.

Типы наследования менделирующих признаков человека.

Аутосомно-доминантный тип наследования. Критерии:

заболевание проявляется в каждом поколении без пропусков («вертикальный» тип);

каждый ребёнок больного родителя имеет 50% риск унаследовать это заболевание;

непораженные дети больных родителей свободны от мутантного гена и имеют здоровых детей;

заболевание наследуется лицами мужского и женского пола одинаково часто и со сходной клинической картиной.

Аутосомно-рецессивный тип наследования. Критерии:

заболевания с этим типом наследования проявляются только у гомозигот, которые получили по одному рецессивному гену от каждого из родителей;

родители больного ребенка, как правило, здоровы и являются гетерозиготными носителями патологического аллеля;

мальчики и девочки заболевают одинаково часто;

отмечается «горизонтальное» распределение больных, т.е. пациенты чаще встречаются в пределах одной родительской пары;

в браке двух пораженных родителей все дети будут больны.

Менделирующие признаки, сцепленные с полом (неполно).

Гены, локализованные в половых хромосомах, по-разному распределяются у мужчин и женщин. В клинической практике значение имеют Х-сцепленные заболевания, т.е. такие, когда патологический ген расположен на Х-хромосоме. Учитывая то, что у женщин имеются две Х-хромосомы, а мужчин одна, женщина, унаследовав патологический аллель, будет гетерозиготой, а мужчина – гемизиготой. Этим определяется разновидности Х-сцепленного наследования: доминантное и рецессивное.

Основные признаки Х-сцепленного доминантного типа наследования:

болезнь встречается у мужчин и женщин, но у женщин примерно в 2 раза чаще;

больной мужчина передаёт мутантный аллель всем своим дочерям и не передаёт сыновьям, поскольку последние получают от отца У-хромосому;

больные женщины передают мутантный аллель 50% своих детей независимо от пола;

женщины в случае болезни страдают менее тяжело (они гетерозиготны), чем мужчины, являющиеся гемизиготами.

Основные признаки Х-сцепленного рецессивного типа наследования

заболевание встречается в основном у лиц мужского пола;

признак (заболевание) передаётся от больного отца через его фенотипически здоровых дочерей половине его внуков;

заболевание никогда не передаётся от отца к сыну;

у женщин-носителей иногда выявляются субклинические признаки патологии;

в браке женщины-носительницы с больным мужчиной 50% дочерей будут больны, 50% дочерей будут носителями; 50% сыновей также будут больны, а 50% сыновей – здоровые.

У-сцепленное, или голандрическое, наследование.

В настоящее время в У-хромосоме выявлена локализация около 20 генов, отвечающих за сперматогенез, интенсивность роста и другие признаки. Признак, гены которого локализованы в У-хромосоме, передаётся от отца всем мальчикам и только мальчикам.

Если два разных гена находятся в одной и той же хромосоме, наблюдается сцепление генов, что и обуславливает совместную передачу этих генов потомству. Сцепление генов является следствием физической целостности структуры, несущей гены. Такой структурой является хромосомы. Правильное объяснение явлению сцепления генов дали американские исследователи Т. Морган и его сотрудники в 1910 году.

Основные положения хромосомной теории наследственности (Т. Морган и его сотрудники).

Гены располагаются в хромосомах, различные хромосомы содержат неодинаковое число генов, набор генов в каждой из негомологичных хромосом уникален.

Гены в хромосоме расположены линейно, каждый ген занимает в хромосоме определенный локус (место).

Гены, расположенные в одной хромосоме, образуют группу сцепления и вместе (сцепленно) передаются потомкам, число групп сцепления равно гаплоидному набору хромосом.

Сцепление не абсолютно, т.к. в профазе мейоза может происходить кроссинговер. Дело в том, что во время мейоза при конъюгации хромосом происходит их перекрест, и гомологичные хромосомы обмениваются гомологичными участками. Это явление и есть кроссинговер. Он может произойти в любом участке гомологичных хромосом. Сила сцепления зависит от расстояния между генами в хромосоме: чем больше расстояние, тем меньше сила сцепления, и наоборот. Расстояние между хромосомами измеряется в % кроссинговера. 1% кроссинговера, или сантиморганида, — это расстояние между двумя локусами, равная длине участка хромосомы, в пределах которого вероятность кроссинговера составляет 1%.

Одной из основных целей исследования генома человека является построение точной и подробной карты каждой хромосомы.

Принцип построения генетических карт хромосом разработала школа

Т. Моргана в 1911-1914 г.г.

Генетическая карта хромосомы – это отрезок прямой, на котором обозначен порядок расположения генов и указано расстояние между ними в процентах кроссинговера.

Генетическим маркером для составления карты может быть любой наследуемый признак – цвет глаз или длина отрезков ДНК. Карты хромосом подобно географическим картам можно строить в разном масштабе, т.е. с разным уровнем разрешения. Самой крупномасштабной картой какой-либо хромосомы является полная последовательность нуклеотидов.

У женщин 22 пары аутосом и две одинаковые половые хромосомы ХХ.

У мужчин 22 пары аутосом и половые хромосомы Х и У (неодинаковые). В процессе мейоза каждая из пары гомологичных хромосом уходит в разные гаметы. Так как у женщин 23 пары гомологичных хромосом, то во все гаметы попадает 22 аутосомы и одна Х-хромосома (гаметы одинаковы), поэтому женский пол гомогаметный.

У мужчин образуется два типа гамет: 22+Х и 22+У, поэтому мужской пол гетерогаметный. Вероятность рождения девочек так же, как и мальчиков, составляет 50%.

Пол будущего ребёнка определяется сочетанием половых хромосом в момент оплодотворения. Если яйцеклетку оплодотворяет сперматозоид с Х-хромосомой, то рождается девочка, а если яйцеклетку оплодотворяет сперматозоид с У-хромосомой, то рождается мальчик.

Основные закономерности наследования

Генетика как наука. Основные понятия генетики

Генетика изучает закономерности наследственности и изменчивости, которые относятся к основным свойствам живых организмов.

Наследственностью называется свойство организмов повторять в ряду поколений сходные признаки. Функциональной единицей наследственности является ген, который реализуется в признак.

Изменчивость – это способность организмов приобретать новые признаки – различия в пределах вида.

Наследование — это способ передачи наследственной информации, который может измениться в зависимости от форм размножения.

Основные закономерности наследования были открыты чешским ботаником Грегором Менделем в 1865 году, хотя в то время они не получили признания. Лишь в 1900 году те же закономерности вновь установили независимо друг от друга Гуго де Фриз в Голландии, Корренс в Германии и Чермак в Австрии.

Изучая закономерности наследования, Г. Мендель использовал гибридологический метод, суть которого состоит в следующем:

— скрещивая организмы между собой, он выделял и анализировал наследование по отдельным контрастным или альтернативным признакам (цвет желтый или зеленый),

— был проведен точный количественный учет наследования каждого альтернативного признака в ряду последующих поколений.

— было прослежено не только первое поколение, но и последующие по этому признаку.

Скрещивание, в котором родительские особи анализируется по одной альтернативной паре признаков, называется моногибридным, по двум — дигибридным, по трем и более — полигибридным.

Основные понятия генетики

В настоящее время установлено, что гены, отвечающие за признаки, находятся в хромосомах. Хромосомы в соматических клетках организма парные или гомологичные. Поэтому за развитие одного признака отвечают два гена. Гены, определяющие развитие одного и того же признака и расположенные в одних и тех же локусах гомологичных хромосом, называют аллельными. Если в обеих гомологичных хромосомах, в одних и тех же локусах, находятся идентичные аллели гена, то такой организм называется гомозиготным. В потомстве таких организмов не происходит расщепления признаков.

Организм, у которого гомологичные хромосомы несут различные аллели того или иного гена, называется гетерозиготным. В потомстве такие организмы обнаруживают расщепление признаков.

Явление преобладания признака получило название доминирования, а преобладающий признак называется доминантным. Признак, который подавляется, называется рецессивным.

Гены принято обозначать буквами латинского алфавита. Гены, относящиеся к одной аллельной паре, обозначают одной и той же буквой, но аллель доминантного состояния признака — прописной, а рецессивного — строчной. Так в зиготе и в соматических клетках всегда два аллеля одного и того же гена, поэтому генотипическую формулу по любому признаку необходимо записывать двумя буквами.

АА – особь, гомозиготная по доминантному признаку

аа – особь, гомозиготная по рецессивному признаку

Аа – особь гетерозиготная

Рецессивный аллель проявляется только в гомозиготном состоянии, а доминантный – как в гомозиготном, так и в гетерозиготном состоянии.

Смотрите так же:  Органы опеки псковского района

Совокупность всех генов в организме называется генотип. Совокупность всех признаков и свойств организма называется фенотип. Фенотип зависит от генотипа и от факторов окружающей среды.

Опыты Мендель проводил на горохе. При скрещивании сортов гороха, имеющих желтые и зеленые семена (скрещивались гомозиготные организмы или чистые линии), все потомство (т.е. гибриды первого поколения) оказалось с желтыми семенами. Противоположный признак (зеленые семена) как бы исчезает. Обнаруженная закономерность получила название правило единообразия (доминирования) гибридов первого поколения (или первый закон Г. Менделя).

Опыты по скрещиванию записывают в виде схем:

А – ген желтой окраски

а – ген зеленой окраски

Р — (parents – родители)

F1 Аа – 100% желтые

Итак, все гибриды первого поколения оказываются однородными: гетерозиготными по генотипу и доминантными по фенотипу.

Таким образом, первое правило (закон) Менделя единообразия гибридов первого поколения можно сформулировать следующим образом: при скрещивании гомозиготных особей, отличающихся друг от друга по одной паре альтернативных признаков, все потомство в первом поколении единообразно как по фенотипу, так и по генотипу

Правило расщепления. Второй закон Менделя

Если скрестить гибриды первого поколения между собой, во втором поколении появляются особи, как с доминантными, так и с рецессивными признаками, т.е. возникает расщепление в определенном численном соотношении. В опытах с горохом желтых семян оказывается в три раза больше, чем зеленых. Эта закономерность получила название второго закона (правило) Менделя, или закона (правило) расщепления.

Расщепление по фенотипу 3:1, по генотипу 1АА:2Аа:1аа

Второй закон (правило) Менделя: при скрещивании двух гетерозиготных особей, анализируемых по одной альтернативной паре признаков (т.е. гибридов), в потомстве ожидается расщепление по фенотипу 3:1 и по генотипу 1:2:1.

Ди- и полигибридное скрещивание. Третий закон Менделя

При дигибридном скрещивании родительские организмы анализируются по двум парам альтернативных признаков. Мендель изучал такие признаки как окраску семян и их форму. При скрещивании гороха с желтыми и гладкими семенами с горохом, имеющим зеленые и морщинистые семена, в первом поколении все потомство оказалось однородным, проявились только доминантные признаки – желтый цвет и гладкая форма. Следовательно, как и при моногибридном скрещивании здесь имело место правило единообразия гибридов первого поколения или правило доминирования.

А – ген желтого цвета

а – ген зеленого цвета

В – ген гладкой формы

в – ген морщинистой формы

F1 АаВв – желтые гладкие

При скрещивании гибридов первого поколения между собой произошло расщепление по фенотипу:

Закономерности наследования, установленные Г. Менделем

Моногибридное скрещивание. Некоторые закономерности наследования были впервые установлены Г. Менделем. Он достиг успеха в своих экспериментах благодаря использованию гибридологического метода — скрещивания организмов, различающихся по каким-либо признакам, и анализа всех последующих поколений с целью установления закономерностей наследования этих признаков. Гибридологический метод и до настоящего времени остается одним из основных в генетических исследованиях.

Г. Мендель усовершенствовал данный метод, и в отличие от своих предшественников, анализировал наследование ограниченного количества признаков (одного, двух, трех). При этом он выбирал признак с альтернативным (контрастирующим) проявлением его у скрещиваемых организмов. Так, он скрещивал сорта гороха с окрашенными и белыми цветками, гладкими и морщинистыми семенами и т. п. Кроме того, Мендель проверял перед скрещиванием, насколько устойчиво наследуются выбранные им признаки в ряду поколений при самоопылении. В процессе эксперимента им проводился также точный количественный учет всех гибридных растений во всех поколениях.

Моногибридное скрещивание. I и II законы Г. Менделя.

Моногибридным называется такое скрещивание, при котором родительские пары различаются по одному признаку. В своих опытах Мендель использовал горох: отцовское растение с красными цветками, а материнское — с белыми или наоборот. Родительские организмы, взятые для скрещивания, обозначают латинской буквой Р (рис. 1 и 2).

Рис. 1. Схема моногибридного скрещивания. Наследование пурпурной и белой окраски цветков у гороха: ? — фактор пурпурной; ? — фактор белой окраски цветка

Рис. 2. Схема, иллюстрирующая поведение пары гомологичных хромосом при моногибридном скрещивании: ? — фактор пурпурной окраски цветка; ? — фактор белой окраски

Полученные в результате скрещивания гибриды первого поколения F1 обладали только красными цветками. Следовательно, признак второго родителя (белые цветы) не проявился. Преобладание у гибридов первого поколения признака одного из родителей (красные цветки) Мендель назвал доминированием, а сам этот признак — доминантным («преобладающим»). «Подавляемый» признак (белые цветки) получил название рецессивного.

Феномен преобладания одного из признаков у всех гибридов первого поколения Мендель определил как закон единообразия гибридов первого поколения (I закон Менделя). Он формулируется следующим образом: при скрещивании гомозиготных особей, анализируемых по одной паре альтернативных признаков, наблюдается единообразие гибридов первого поколения как по фенотипу, так и по генотипу.

При скрещивании однородных гибридов первого поколения между собой во втором поколении F2 Мендель наблюдал появление растений как с доминантными (красные цветки), так и с рецессивными (белые цветки) признаками. Эта закономерность носит название расщепления. И оно оказывалось не случайным, а строго закономерным: 3/4 от общего числа гибридов второго поколения F2 имеют красные цветки, а 1/4 — белые. Иными словами, соотношение числа растений с доминантными и рецессивными признаками составляет 3 : 1. Из этого следует, что рецессивный признак у гибридов F 1 не исчез, а был подавлен и проявился во втором поколении.

Расщепление во втором поколении гибридов было названо Менделем законом расщепления гибридов второго поколения (II закон Менделя). Формулируется следующим образом: при скрещивании гетерозиготных особей, анализируемых по одной паре альтернативных признаков, наблюдается расщепление в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.

Пытаясь дать объяснение выявленным закономерностям, автор теории высказал ряд предположений о механизмах наследования признаков:

> поскольку у гибридов F1 проявляется лишь один признак (доминантный), а второй (рецессивный) отсутствует, но вновь проявляется у гибридов F2, то, следовательно, наследуются не сами признаки, а наследственные факторы (какие-то материальные частицы), их определяющие;

> эти факторы являются постоянными, присутствуют в организме попарно и передаются из поколения в поколение через гаметы, причем в половую клетку попадает лишь один наследственный фактор из пары;

> при слиянии половых клеток в новом организме вновь оказывается пара наследственных факторов (по одному от отцовского и материнского организмов);

> наследственные факторы неравноценны по своей «силе», более «сильный» доминантный подавляет более «слабый» рецессивный (чем и объясняется единообразие гибридов первого поколения F1);

в ходе оплодотворения могут сливаться гаметы, несущие либо одинаковые факторы (только доминантные или только рецессивные), либо разные (одна гамета содержит доминантный, другая — рецессивный). В первом случае у нового организма будет присутствовать пара одинаковых факторов. Мендель назвал такие организмы гомозиготными (либо АА, либо аа). Во втором случае организмы содержат два разных фактора — они гетерозиготные (Аа);

> сочетание доминантных и рецессивных факторов в строго определенных комбинациях обусловливает расщепление признаков в соотношении 3 : 1 у гибридов второго поколения F2.

Теперь вместо слова «фактор» используется «ген». Все предположения, высказанные Менделем о механизме наследования признаков у организмов, получили в ходе развития науки полное подтверждение.

Менделем была предложена и система записи результатов скрещивания с использованием буквенной символики, которой пользуются в генетике до сих пор. Парные наследственные факторы (т. е. аллельные гены) обозначаются одной буквой, при этом доминантный ген — прописной (например, А), а рецессивный — строчной (а).

Для установления генотипа особи с доминантным признаком при полном доминировании применяют анализирующее скрещивание. Для этого данный организм скрещивают с рецессивным гомозиготным по данной аллели. Возможны два варианта результатов скрещивания:

Если в результате скрещивания получается единообразие гибридов первого поколения, то анализируемая особь является гомозиготной, а если в F1, произойдет расщепление признаков 1:1, то — гетерозиготной.

Рассмотрим результаты опытов по моногибридному скрещиванию в виде схемы на основе системы записи, предложенной Менделем (см. рис. 1).

Уже при жизни ученого в работах исследователей указывалось на то, что закономерности наследования признаков при моногибридном скрещивании подчас отличаются от установленных им. Например, при скрещивании растений «ночной красавицы» с красными и белыми цветками все гибриды F1 имеют розовые цветки. А во втором поколении гибридов F2 наблюдается расщепление признака в соотношении 1 : 2 : 1 (растения с красными, розовыми и белыми цветками) (рис. 3).

Рис. 3. Схема неполного доминирования

В этом случае наблюдается промежуточный характер наследования, т. е. у гетерозиготных гибридов (Rr) не проявляется ни доминантный признак (красные цветки), ни рецессивный (белые цветки). Эта закономерность наследования получила название неполного доминирования.

Кроме данного феномена были выявлены и другие закономерности наследования, отличные от законов Менделя. Следовательно, они не являются абсолютными, а имеют ограниченный характер.

В современной генетике существуют понятия менделирующие признаки (наследующиеся по законам Менделя) и неменделирующие (наследующиеся по иным законам). Менделирующих признаков у всех организмов большое число. Немало их и у человека (табл. 8 и рис. 5).

Некоторые менделирующие признаки у человека

Доминантные признаки Рецессивные признаки

Author: admin