Требования к вычислительным системам

Для того, чтобы оценить ресурс, необходимо авторизоваться.

Курс «Вычислительные системы, сети и телекоммуникации» предназначен для студентов экономических вузов, обучающихся по специальности «Прикладная информатика (в экономике)». Цель курса: обучить студентов активному и сознательному использованию наиболее распространенных вычислительных устройств, систем, сетей и телекоммуникаций, помочь в их выборе, наиболее полно отвечающих потребностям практики и при этом грамотно оценивать возможности и ограничения современных вычислительных устройств, систем, сетей и телекоммуникаций.

Требования, предъявляемые к современным вычислительным сетям

Вычислительная сеть создается для обеспечения потенциального доступа к любому ресурсу сети для любого пользователя сети. Качество доступа к ресурсу как глобальная характеристика функционирования сети может быть описана многими показателями, выбор которых зависит от задач, стоящих перед вычислительной сетью. Среди основных показателей можно выделить следующие:

  • производительность;
  • надежность;
  • управляемость;
  • расширяемость;
  • прозрачность.

Производительность

Производительность вычислительной сети может быть оценена с разных позиций. С точки зрения пользователя, важным числовым показателем производительности сети является время реакции системы, особенно в той части, которая относится к работе сети. Время реакции — это время между моментом возникновения запроса и моментом получения ответа. Время реакции зависит от многих факторов, таких как используемая служба сети, степень загруженности сети или отдельных сегментов и др. Поэтому при оценке производительности работы сети определяется среднее время реакции.
Пропускная способность сети определяется количеством информации, переданной через сеть или ее сегмент в единицу времени. Пропускная способность сети характеризует, насколько быстро сеть может выполнить свою основную задачу передачи информации. Пропускная способность определяется в битах в секунду. [бод]

Надежность работы вычислительной сети определяется надежностью работы всех ее компонентов. Для повышения надежности работы аппаратных компонентов обычно используют дублирование, когда при отказе одного из элементов функционирование сети обеспечат другие.
При работе вычислительной сети должна обеспечиваться сохранность информации и защита ее от искажений. Как правило, информация в сети хранится в нескольких экземплярах (для повышения надежности). В этом случае необходимо обеспечить согласованность данных (например, идентичность копий при изменении информации).
Одной из функций вычислительной сети является передача информации (передача осуществляется порциями, которые называются пакетами), во время которой возможны ее потери и искажения. Для оценки надежности исполнения этой функции используются показатели вероятности потери пакета при его передаче, либо вероятности доставки пакета.
В современных вычислительных сетях важное значение имеет другая сторона надежности — безопасность. Это способность сети обеспечить защиту информации от несанкционированного доступа. Задачи обеспечения безопасности решаются применением как специального программного обеспечения, так и соответствующих аппаратных средств.

При работе вычислительной сети, которая в идеале объединяет отдельные компьютеры в единое целое, необходимы средства не только для наблюдения за работой сети, сбора разнообразной информации о функционировании сети, но и средства управления сетью. В общем случае система управления сетью должна предоставлять возможность воздействовать на работу любого элемента сети. Должна быть обеспечена возможность осуществлять мероприятия по управлению с любого элемента сети. Управлением сетью занимается администратор сети или пользователь, которому поручены эти функции. Обычный пользователь, как правило, не имеет административных прав.
Другими характеристиками управляемости являются возможность определения проблем в работе вычислительной сети или отдельных ее сегментов, выработка управленческих действий для решения выявленных проблем и возможность автоматизации этих процессов при решении похожих проблем в будущем.

Любая вычислительная сеть является развивающимся объектом, и не только в плане модернизации ее элементов, но и в плане ее физического расширения, добавления новых элементов сети (пользователей, компьютеров, служб). Существование таких возможностей, трудоемкость их осуществления входят в понятие расширяемости. Другой похожей характеристикой является масштабируемость сети, которая определяет возможность расширения сети без существенного снижения ее производительности. Обычно одноранговые сети обладают хорошей расширяемостью, но плохой масштабируемостью. В таких сетях легко добавить новый компьютер, используя дополнительный кабель и сетевой адаптер, но существуют ограничения на количество подключаемых компьютеров в связи с существенным падением производительности сети. В многосегментных сетях используются специальные коммуникационные устройства, которые позволяют подключать к сети значительное количество дополнительных компьютеров без снижения общей производительности сети.

Прозрачность вычислительной сети является ее характеристикой с точки зрения пользователя. Эта важная характеристика должна оцениваться с разных сторон. Прозрачность сети предполагает скрытие (невидимость) особенностей сети от конечного пользователя. Пользователь обращается к ресурсам сети как к обычным локальным ресурсам компьютера, на котором он работает.
Вычислительная сеть объединяет компьютеры разных типов с разными операционными системами. Пользователю, у которого установлена, например, Windows, прозрачная сеть должна обеспечивать доступ к необходимым ему при работе ресурсам компьютеров, на которых установлена, например, UNIX. Другой важной стороной прозрачности сети является возможность распараллеливания работы, между разными элементами сети. Вопросы назначения отдельных параллельных заданий отдельным устройствам сети также должны быть скрытыми от пользователя и решаться в автоматическом режиме.

Интегрируемость

Интегрируемость означает возможность подключения к вычислительной сети разнообразного и разнотипного оборудования, программного обеспечения от разных производителей. Если такая неоднородная вычислительная сеть успешно выполняет свои функции, то можно говорить о том, что она обладает хорошей интегрируемостью.
Современная вычислительная сеть имеет дело с разнообразной информацией, процесс передачи которой сильно зависит от типа информации. Передача традиционных компьютерных данных характеризуется неравномерной интенсивностью. При этом нет жестких требований к синхронности передачи. При передаче мультимедийных данных качество передаваемой информации в существенной степени зависит от синхронизации передачи. Сосуществование двух типов данных с противоположными требованиями к процессу передачи является сложной задачей, решение которой является необходимым условием вычислительной сети с хорошей интегрируемостью.
Основным направлением развития интегрируемости вычислительных сетей является стандартизация сетей, их элементов и компонентов. Все стандарты можно разделить на следующие виды:

  • стандарты отдельных фирм;
  • стандарты специальных комитетов и объединений, создаваемых несколькими фирмами;
  • стандарты национальных организаций по стандартизации;
  • международные стандарты.

Работы по стандартизации вычислительных сетей ведутся большим количеством организаций. Среди них необходимо выделить те, которые давно и успешно работают в области стандартизации вычислительных сетей.
Международная организация по стандартизации (International Organization for Standardization — ISO). Эта организация известна разработкой модели взаимодействия открытых систем, которая в настоящее время является основной, своего рода «эталонной» моделью вычислительной сети. Эта модель является основой стандартизации в области вычислительных сетей.
Международный союз электросвязи (International Telecommunication Union, ITU) — организация при Организации Объединенных Наций, в которой существует телекоммуникационный сектор (ITU-T). ITU-T отвечает за разработку стандартов в области телекоммуникационного оборудования и услуг (телефонии, электронной почты, факсимильной связи, телетекста, телекса, передачи данных, аудио- и видеосигналов).
Институт инженеров по электротехнике и радиоэлектронике — Institute of Electrical and Electronic Engineers, IEEE — национальная организация США, определяющая стандарты электронных коммуникаций. Самыми известными его стандартами являются стандарты, разработанные группой 802 (802.1, 802.2, 802.3 и 802.5), которые описывают общие понятия, используемые в области локальных сетей.
Европейская ассоциация производителей компьютеров (ЕСМА) — некоммерческая организация, активно сотрудничающая с ITU-T и ISO. Она занимается разработкой стандартов и технических обзоров, относящихся к компьютерной и коммуникационной технологиям.
Американский национальный институт стандартов — American National Standarts Institute, ANSI. ANSI представляет США в международной организации ISO. Стандарт технологии FDDI является разработкой этого института.

Релятивисты и позитивисты утверждают, что «мысленный эксперимент» весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: «Если факт не соответствует теории — измените факт» (В другом варианте » — Факт не соответствует теории? — Тем хуже для факта»).

Максимально, на что может претендовать «мысленный эксперимент» — это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

Понятие «мысленный эксперимент» придумано специально спекулянтами — релятивистами для шулерской подмены реальной проверки мысли на практике (эксперимента) своим «честным словом». Подробнее читайте в FAQ по эфирной физике.

Полный пакет IT решений для бизнеса








Требования к ЛВС

Главным требованием, предъявляемым к ЛВС, является выполнение сетью ее основной функции — обеспечение пользователям потенциальной возможности доступа к разделяемым ресурсам всех компьютеров, объединенных в сеть. Все остальные требования — производительность, надежность, совместимость, управляемость и масшабируемость — связаны с качеством выполнения этой основной задачи.

Производительность — это свойство обеспечивается возможностью распараллеливания работ между несколькими компьютерами сети. Существуют следующие основные характеристики производительности сети — время реакции, пропускная способность и задержка передачи и вариация задержки передачи. Время реакции сети является интегральной характеристикой производительности с точки зрения пользователя. В общем случае время реакции определяется как интервал времени между возникновением запроса пользователя к какой-либо сетевой службе и получением ответа на этот запрос. Пропускная способность отражает объем данных, переданных сетью или ее частью в единицу времени. Задержка передачи определяется как задержка между моментом поступления пакета на вход какого-либо сетевого устройства или части сети и моментом появления его на выходе этого устройства.

Надежность ЛВС определяется следующими показателями: Готовностью или коэффициентом готовности (availability), который означает долю времени, в течении которого система может быть использована. Вероятностью доставки пакета узлу назначения без искажений (вероятность потери пакета, вероятность искажения отдельного бита передаваемых данных, отношение потерянных пакетов к доставленным) Способностью системы защитить данные от несанкционированного доступа (безопасностью ). Отказоустойчивостью (fault tolerance) — способностью скрыть от пользователя отказ отдельных элементов сети.

Расширяемость (extensibility) означает возможность сравнительно легкого добавления отдельных элементов сети (пользователей, компьютеров, приложений и служб), наращивая длины сегментов сети и замены существующей аппаратуры более мощной.

Смотрите так же:  Пенсия по инвалидности по речи

Масштабируемость (scalability) означает, что сеть позволяет наращивать количество узлов и протяженность связей в очень широких пределах, при этом производительность сети не ухудшается.

Прозрачность (transparency) сети достигается в том случае, когда сеть представляется пользователям не как множество отдельных компьютеров, связанных между собой системой кабелей, а как единая традиционная вычислительная машина с системой разделения времени.

Поддержка разных видов трафика. Сеть должна обеспечить совместную передача традиционного компьютерного и мультимедийного трафика (в том числе видео и речи).

Управляемость подразумевает собой возможность централизованно контролировать состояние основных элементов сети, выявлять и разрешать проблемы, возникающие при работе сети, выполнять анализ производительности сети и планировать ее развитие.

Совместимость или интегрируемость означает , что сеть способна включать в себя самое разнообразное программное и аппаратное обеспечение, то есть в ней могут сосуществовать различные операционные системы, поддерживающие различные стеки коммуникационных протоколов, и работать аппаратные средства и приложения от различных производителей.

Все права компании © Hard & Soft group защищены. 1997-2017.
г.Серпухов, ул.Володарского, дом 7: 8 (4967) 37-47-70 | 8 (4967) 37-47-77 | 8 (906) 722-73-14

Требования к вычислительным системам

3. ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К СОВРЕМЕННЫМ ВЫЧИСЛИТЕЛЬНЫМ СЕТЯМ

Основные требования, предъявляемые к вычислительным сетям — производительность, надежность, совместимость, управляемость, защищенность, расширяемость и масштабируемость . Наиболее важными из которых являются — производительность и надежность.

Независимо от выбранного показателя качества обслуживания сети существу­ют два подхода к его обеспечению. Первый подход состоит в том, что сеть гарантирует пользователю соблюдение некото­рой числовой величины показателя качества обслуживания. Например, задержка передачи пакетов сетью не будет превышать 150 мс. Или средняя пропускная спо­собность канала не будет ниже 5 Мбит/ с , при этом канал будет разрешать пульсации трафика в 10 Мбит на интервалах времени не более 2 секунд. Технологии frame relay и ATM позволяют строить сети, гарантиру­ющие качество обслуживания по производительности.

Второй подход состоит в том, что сеть обслуживает пользователей в соответствии с их приоритетами: гарантируется не качество обслуживания, а только уровень привилегий. Такое обслуживание называется обслуживанием best effort — «с наибольшим старанием». Сеть старается по возможности более качественно обслужить конечного пользователя, но ничего при этом не гарантирует.

Производительность . Существует несколько основных характеристик производительности сети:

  • время реакции;
  • пропускная способность;
  • задержка передачи и вариация задержки передачи.

Время реакции сети является интегральной характеристикой производительно­сти сети и определяется как интервал времени между воз­никновением запроса к какой-либо сетевой службе и получением на него ответа.

Пропускная способность отражает объем данных, переданных сетью или ее час­тью в единицу времени. Она измеряется либо в битах в секунду, либо в пакетах в секунду. Пропускная способность может быть мгновенной, максимальной и средней.

Средняя пропускная способность вычисляется путем деления общего объема переданных данных на время их передачи, причем выбирается достаточно длитель­ный промежуток времени — час, день или неделя.

Мгновенная пропускная способность отличается от средней тем, что для ус­реднения выбирается очень маленький промежуток времени — например, 10 мс, или 1 с .

Максимальная пропускная способность — это наибольшая мгновенная пропускная способность, зафиксированная в течение периода наблюдения.

Иногда полезно оперировать с общей пропускной способностью сети, которая определяется как среднее количество информации, переданной между всеми узлами сети в единицу времени. Этот показатель характеризует качество сети в целом, не дифференцируя его по отдельным сегментам или устройствам.

Задержка передачи определяется как задержка между моментом поступления пакета на вход какого-либо сетевого устройства или части сети и моментом появле­ния его на выходе этого устройства. Обычно качество сети характеризуют величинами максимальной задержки передачи и вариа­цией задержки.

Одной из первоначальных целей создания распределенных систем, к которым относятся и вычислительные сети, являлось достижение большей надежности по сравнению с отдельными вычислительными машинами.

Готовность или коэффициент готовности ( availability ) означает долю времени, в течение которого система может быть использована. Готовность может быть улучшена введением избыточности в структуру системы: ключевые элементы си­стемы должны существовать в нескольких экземплярах, чтобы при отказе одного из них функционирование системы обеспечивали другие.

Чтобы систему можно было отнести к высоконадежным, она должна обеспечить сохранность данных и защиту их от искажений. Кроме этого, должна поддерживаться согласованность (непротиворечивость) данных, например, если для повышения надежности на нескольких файловых серверах хранится несколько копий данных, то нужно постоянно обеспечивать их идентичность.

Другой характеристикой надежности является вероятность доставки i пакета узлу назначения без искажений. Наряду с этой характеристикой могут использоваться и другие показатели: вероятность потери пакета, вероятность искажения отдельного бита передаваемых данных, отношение потерянных пакетов к доставленным .

Другим аспектом общей надежности является безопасность ( security ), то есть способность системы защитить данные от несанкционированного доступа.

Также характеристикой надежности является отказоустойчивость ( fault tolerance ). В сетях под отказоустойчивостью понимается способность системы скрыть от пользователя отказ отдельных ее элементов. В отказоустойчивой системе отказ одного из ее элементов приводит к некоторому снижению качества ее работы (деградации), а не к полному останову.

Расширяемость ( extensibility ) означает возможность сравнительно легкого до­бавления отдельных элементов сети (пользователей, компьютеров, приложений, служб), наращивания длины сегментов сети и замены существующей аппаратуры более мощной.

Масштабируемость ( scalability ) означает, что сеть позволяет наращивать ко­личество узлов и протяженность связей в очень широких пределах, при этом про­изводительность сети не ухудшается. Для обеспечения масштабируемости сети приходится применять дополнительное коммуникационное оборудование и спе­циальным образом структурировать сеть.

Напри­мер, локальная сеть Ethernet , построенная на основе одного сегмента толстого ко­аксиального кабеля, обладает хорошей расширяемостью, поскольку позволяет легко подключать новые станции. Однако такая сеть имеет ограничение на число станций (не выше 30-40). Наличие такого ограничения и является признаком плохой масштабируемости системы при хорошей расширяе­мости.

Прозрачность ( transparency ) сети достигается в том случае, когда сеть представля­ется пользователям не как множество отдельных компьютеров, связанных между собой сложной системой кабелей, а как единая традиционная вычислительная ма­шина с системой разделения времени.

Поддержка разных видов трафика . Компьютерные сети изначально предназначены для совместного доступа пользователя к ресурсам компьютеров: файлам, принтерам и т. п. 90-е годы стали годами проникновения в компьютерные сети трафика мультимедийных данных, представляющих в цифровой форме речь и видеоизображение.

Главной особенностью трафика, образующегося при динамической передаче носа или изображения, является наличие жестких требований к синхронности передаваемых сообщений. Для качественного воспроизведения непрерывных процессов, необходимо получение сигналов с той же частотой, с которой они были измерены на передающей стороне. При запаздывании сообщений будут наблюдаться искажения.

В то же время трафик компьютерных данных характеризуется крайне неравно­мерной интенсивностью поступления сообщений в сеть («пульсирующий» трафик), поэтому необходимость передавать мультимедийный трафик требует внесения принципиальных изменений как в протоколы, так и оборудование.

Особую сложность представляет совмещение в одной сети традиционного компьютерного и мультимедийного трафика. Передача исключительно мультимедий­ного трафика компьютерной сетью вызывает меньшие трудности. Наибо­лее близки к этой цели сети на основе технологии ATM, разработчики которой изначально учитывали случай сосуществования разных типов трафика в одной сети.

Управляемость сети подразумевает возможность централизованно контролировать состояние основных элементов сети, выявлять и разрешать проблемы, возникаю­щие при работе сети, выполнять анализ производительности и планировать разви­тие сети.

Совместимость или интегрируемость означает, что сеть способна включать в себя самое разнообразное программное и аппаратное обеспечение, то есть в ней могут сосуществовать различные операционные системы, поддерживающие разные стеки коммуникационных протоколов, и работать аппаратные средства и приложения от разных производителей. Сеть, состоящая из разнотипных элементов, называется неоднородной или гетерогенной , а если гетерогенная сеть работает без проблем, то она является интегрированной. Основной путь построения интегрированных сетей — использование модулей, выполненных в соответствии с открытыми стандартами и спецификациями.

Вопросы для самоподготовки

  1. Каковы требования, предъявляемые к современным компьютерным сетям?
  2. Что такое «пропускная способность сети»? Каковы ее виды?
  3. Какие характеристики влияют на пропускную способность сети?
  4. Что понимают под «прозрачностью» сети?
  5. В чем состоит разница между «расширяемостью» и « масштабируемостью » сети?
  6. В чем состоит разница между «гетерогенной» и «интегрированной» сетями?
  7. Каковы особенности «компьютерного» и « мультимедийного » трафиков?

Требования к вычислительным системам

Глава№1:»Общие принципы построения вычислительных сетей»

1.6. Требования, предъявляемые к современным вычислительным сетям

1.6. Требования, предъявляемые к современным вычислительным сетям

Главным требованием, предъявляемым к сетям, является выполнение сетью ее основной функции — обеспечение пользователям потенциальной возможности доступа к разделяемым ресурсам всех компьютеров, объединенных в сеть. Все остальные требования — производительность, надежность, совместимость, управляемость, защищенность, расширяемость и масштабируемость — связаны с качеством выполнения этой основной задачи.

Хотя все эти требования весьма важны, часто понятие «качество обслуживания» (Quality of Service, QpS) компьютерной сети трактуется более узко — в него включаются только две самые важные характеристики сети — производительность и надежность.

Независимо от выбранного показателя качества обслуживания сети существуют два подхода к его обеспечению. Первый подход, очевидно, покажется наиболее естественным с точки зрения пользователя сети. Он состоит в том, что сеть (точнее, обслуживающий ее персонал) гарантирует пользователю соблюдение некоторой числовой величины показателя качества обслуживания. Например, сеть может гарантировать пользователю А, что любой из его пакетов, посланных пользователю В, будет задержан сетью не более, чем на 150 мс. Или, что средняя пропускная способность канала между пользователями А и В не будет ниже 5 Мбит/с, при этом канал будет разрешать пульсации трафика в 10 Мбит на интервалах времени не более 2 секунд. Технологии frame relay и АТМ позволяют строить сети, гарантирующие качество обслуживания по производительности.

Второй подход состоит в том, что сеть обслуживает пользователей в соответствии с их приоритетами. То есть качество обслуживания зависит от степени привилегированности пользователя или группы пользователей, к которой он принадлежит. Качество обслуживания в этом случае не гарантируется, а гарантируется только уровень привилегий пользователя. Такое обслуживание называется обслуживанием best effort — с наибольшим старанием. Сеть старается по возможности более качественно обслужить пользователя, но ничего при этом не гарантирует. По такому принципу работают, например, локальные сети, построенные на коммутаторах с приоритезацией кадров.

Потенциально высокая производительность — это одно из основных свойств распределенных систем, к которым относятся компьютерные сети. Это свойство обеспечивается возможностью распараллеливания работ между несколькими компьютерами сети. К сожалению, эту возможность не всегда удается реализовать. Существует несколько основных характеристик производительности сети:

Смотрите так же:  Алименты и порядок выплат

задержка передачи и вариация задержки передачи.

Время реакциисети является интегральной характеристикой производительности сети с точки зрения пользователя. Именно эту характеристику имеет в виду пользователь, когда говорит: «Сегодня сеть работает медленно».

В общем случае время реакции определяется как интервал времени между возникновением запроса пользователя к какой-либо сетевой службе и получением ответа на этот запрос.

Очевидно, что значение этого показателя зависит от типа службы, к которой обращается пользователь, от того, какой пользователь и к какому серверу обращается, а также от текущего состояния элементов сети — загруженности сегментов, коммутаторов и маршрутизаторов, через которые проходит запрос, загруженности сервера и т. п.

Поэтому имеет смысл использовать также и средневзвешенную оценку времени реакции сети, усредняя этот показатель по пользователям, серверам и времени дня (от которого в значительной степени зависит загрузка сети).

Время реакции сети обычно складывается из нескольких составляющих. В общем случае в него входит время подготовки запросов на клиентском компьютере, время передачи запросов между клиентом и сервером через сегменты сети и промежуточное коммуникационное оборудование, время обработки запросов на сервере, время передачи ответов от сервера клиенту и время обработки получаемых от сервера ответов на клиентском компьютере.

Ясно, что пользователя разложение времени реакции на составляющие не интересует — ему важен конечный результат, однако для сетевого специалиста очень важно выделить из общего времени реакции составляющие, соответствующие этапам собственно сетевой обработки данных, — передачу данных от клиента к серверу через сегменты сети и коммуникационное оборудование.

Знание сетевых составляющих времени реакции дает возможность оценить производительность отдельных элементов сети, выявить узкие места и в случае необходимости выполнить модернизацию сети для повышения ее общей производительности.

Пропускная способность отражает объем данных, переданных сетью или ее частью в единицу времени. Пропускная способность уже не является пользовательской характеристикой, так как она говорит о скорости выполнения внутренних операций сети — передачи пакетов данных между узлами сети через различные коммуникационные устройства. Зато она непосредственно характеризует качество выполнения основной функции сети — транспортировки сообщений — и поэтому чаще используется при анализе производительности сети, чем время реакции.

Пропускная способность измеряется либо в битах в секунду, либо в пакетах в секунду. Пропускная способность может быть мгновенной, максимальной и средней.

Средняя пропускная способность вычисляется путем деления общего объема переданных данных на время их передачи, причем выбирается достаточно длительный промежуток времени — час, день или неделя.

Мгновенная пропускная способность отличается от средней тем, что для усреднения выбирается очень маленький промежуток времени — например, 10 мс или 1 с.

Максимальная пропускная способность — это наибольшая мгновенная пропускная способность, зафиксированная в течение периода наблюдения.

Чаще всего при проектировании, настройке и оптимизации сети используются такие показатели, как средняя и максимальная пропускные способности. Средняя пропускная способность отдельного элемента или всей сети позволяет оценить работу сети на большом промежутке времени, в течение которого в силу закона больших чисел пики и спады интенсивности трафика компенсируют друг друга. Максимальная пропускная способность позволяет оценить возможности сети справляться с пиковыми нагрузками, характерными для особых периодов работы сети, например утренних часов, когда сотрудники предприятия почти одновременно регистрируются в сети и обращаются к разделяемым файлам и базам данных.

Пропускную способность можно измерять между любыми двумя узлами или точками сети, например между клиентским компьютером и сервером, между входным и выходным портами маршрутизатора. Для анализа и настройки сети очень полезно знать данные о пропускной способности отдельных элементов сети.

Важно отметить, что из-за последовательного характера передачи пакетов различными элементами сети общая пропускная способность сети любого составного пути в сети будет равна минимальной из пропускных способностей составляющих элементов маршрута. Для повышения пропускной способности составного пути необходимо в первую очередь обратить внимание на самые медленные элементы — в данном случае таким элементом, скорее всего, будет маршрутизатор. Следует подчеркнуть, что если передаваемый по составному пути трафик будет иметь среднюю интенсивность, превосходящую среднюю пропускную способность самого медленного элемента пути, то очередь пакетов к этому элементу будет расти теоретически до бесконечности, а практически — до тех пор, пока не заполниться его буферная память, а затем пакеты просто начнут отбрасываться и теряться.

Иногда полезно оперировать с общей пропускной способностью сети, которая определяется как среднее количество информации, переданной между всеми узлами сети в единицу времени. Этот показатель характеризует качество сети в целом, не дифференцируя его по отдельным сегментам или устройствам.

Обычно при определении пропускной способности сегмента или устройства в передаваемых данных не выделяются пакеты какого-то определенного пользователя, приложения или компьютера — подсчитывается общий объем передаваемой информации. Тем не менее для более точной оценки качества обслуживания такая детализации желательна, и в последнее время системы управления сетями все чаще позволяют ее выполнять.

Задержка передачи определяется как задержка между моментом поступления пакета на вход какого-либо сетевого устройства или части сети и моментом появления его на выходе этого устройства. Этот параметр производительности по смыслу близок ко времени реакции сети, но отличается тем, что всегда характеризует только сетевые этапы обработки данных, без задержек обработки компьютерами сети. Обычно качество сети характеризуют величинами максимальной задержки передами и вариацией задержки. Не все типы трафика чувствительны к задержкам передачи, во всяком случае, к тем величинам задержек, которые характерны для компьютерных сетей, — обычно задержки не превышают сотен миллисекунд, реже — нескольких секунд. Такого порядка задержки пакетов, порождаемых файловой службой, службой электронной почты или службой печати, мало влияют на качество этих служб с точки зрения пользователя сети. С другой стороны, такие же задержки пакетов, переносящих голосовые данные или видеоизображение, могут приводить к значительному снижению качества предоставляемой пользователю информации — возникновению эффекта «эха», невозможности разобрать некоторые слова, дрожание изображения и т. п.

Пропускная способность и задержки передачи являются независимыми параметрами, так что сеть может обладать, например, высокой пропускной способностью, но вносить значительные задержки при передаче каждого пакета. Пример такой ситуации дает канал связи, образованный геостационарным спутником. Пропускная способность этого канала может быть весьма высокой, например 2 Мбит/с, в то время как задержка передачи всегда составляет не менее 0,24 с, что определяется скоростью распространения сигнала (около 300 000 км/с) и длиной канала (72 000 км).

Одной из первоначальных целей создания распределенных систем, к которым относятся и вычислительные сети, являлось достижение большей надежности по сравнению с отдельными вычислительными машинами.

Важно различать несколько аспектов надежности. Для технических устройств используются такие показатели надежности, как среднее время наработки на отказ, вероятность отказа, интенсивность отказов. Однако эти показатели пригодны для оценки надежности простых элементов и устройств, которые могут находиться только в двух состояниях — работоспособном или неработоспособном. Сложные системы, состоящие из многих элементов, кроме состояний работоспособности и неработоспособности, могут иметь и другие промежуточные состояния, которые эти характеристики не учитывают. В связи с этим для оценки надежности сложных систем применяется другой набор характеристик.

Готовность или коэффициент готовности (availability) означает долю времени, в течение которого система может быть использована. Готовность может быть улучшена путем введения избыточности в структуру системы: ключевые элементы системы должны существовать в нескольких экземплярах, чтобы при отказе одного из них функционирование системы обеспечивали другие.

Чтобы систему можно было отнести к высоконадежным, она должна как минимум обладать высокой готовностью, но этого недостаточно. Необходимо обеспечить сохранность данных и защиту их от искажений. Кроме этого, должна поддерживаться согласованность (непротиворечивость) данных, например, если для повышения надежности на нескольких файловых серверах хранится несколько копий данных, то нужно постоянно обеспечивать их идентичность.

Так как сеть работает на основе механизма передачи пакетов между конечными узлами, то одной из характерных характеристик надежности является вероятность доставки пакета узлу назначения без искажений. Наряду с этой характеристикой могут использоваться и другие показатели: вероятность потери пакета (по любой из причин — из-за переполнения буфера маршрутизатора, из-за несовпадения контрольной суммы, из-за отсутствия работоспособного пути к узлу назначения и т. д.), вероятность искажения отдельного бита передаваемых данных, отношение потерянных пакетов к доставленным.

Другим аспектом общей надежности является безопасность (security), то есть способность системы защитить данные от несанкционированного доступа. В распределенной системе это сделать гораздо сложнее, чем в централизованной. В сетях сообщения передаются по линиям связи, часто проходящим через общедоступные помещения, в которых могут быть установлены средства прослушивания линий. Другим уязвимым местом могут быть оставленные без присмотра персональные компьютеры. Кроме того, всегда имеется потенциальная угроза взлома защиты сети от неавторизованных пользователей, если сеть имеет выходы в глобальные сети общего пользования.

Еще одной характеристикой надежности является отказоустойчивость (fault tolerance). В сетях под отказоустойчивостью понимается способность системы скрыть от пользователя отказ отдельных ее элементов. Например, если копии таблицы базы данных хранятся одновременно на нескольких файловых серверах, то пользователи могут просто не заметить отказ одного из них. В отказоустойчивой системе отказ одного из ее элементов приводит к некоторому снижению качества ее работы (деградации), а не к полному останову. Так, при отказе одного из файловых серверов в предыдущем примере увеличивается только время доступа к базе данных из-за уменьшения степени распараллеливания запросов, но в целом система будет продолжать выполнять свои функции.

Термины расширяемость и масштабируемость иногда используют как синонимы, но это неверно — каждый из них имеет четко определенное самостоятельное значение.

Расширяемость (extensibility) означает возможность сравнительно легкого добавления отдельных элементов сети (пользователей, компьютеров, приложений, служб), наращивания длины сегментов сети и замены существующей аппаратуры более мощной. При этом принципиально важно, что легкость расширения системы иногда может обеспечиваться в некоторых весьма ограниченных пределах. Например, локальная сеть Ethernet, построенная на основе одного сегмента толстого коаксиального кабеля, обладает хорошей расширяемостью, в том смысле, что позволяет легко подключать новые станции. Однако такая сеть имеет ограничение на число станций — их число не должно превышать 30-40. Хотя сеть допускает физическое подключение к сегменту и большего числа станций (до 100), но при этом чаще всего резко снижается производительность сети. Наличие такого ограничения и является признаком плохой масштабируемости системы при хорошей расширяемости.

Смотрите так же:  Римский договор 1957 евратом

Масштабируемость (scalability) означает, что сеть позволяет наращивать количество узлов и протяженность связей в очень широких пределах, при этом производительность сети не ухудшается. Для обеспечения масштабируемости сети приходится применять дополнительное коммуникационное оборудование и специальным образом структурировать сеть. Например, хорошей масштабируемостью обладает многосегментная сеть, построенная с использованием коммутаторов и маршрутизаторов и имеющая иерархическую структуру связей. Такая сеть может включать несколько тысяч компьютеров и при этом обеспечивать каждому пользователю сети нужное качество обслуживания.

Прозрачность (transparency) сети достигается в том случае, когда сеть представляется пользователям не как множество отдельных компьютеров, связанных между собой сложной системой кабелей, а как единая традиционная вычислительная машина с системой разделения времени. Известный лозунг компании Sun Microsystems: «Сеть — это компьютер» — говорит именно о такой прозрачной сети.

Прозрачность может быть достигнута на двух различных уровнях — на уровне пользователя и на уровне программиста. На уровне пользователя прозрачность означает, что для работы с удаленными ресурсами он использует те же команды и привычные ему процедуры, что и для работы с локальными ресурсами. На программном уровне прозрачность заключается в том, что приложению для доступа к удаленным ресурсам требуются те же вызовы, что и для доступа к локальным ресурсам. Прозрачность на уровне пользователя достигается проще, так как все особенности процедур, связанные с распределенным характером системы, маскируются от пользователя программистом, который создает приложение. Прозрачность на уровне приложения требует сокрытия всех деталей распределенности средствами сетевой операционной системы.

Сеть должна скрывать все особенности операционных систем и различия в типах компьютеров. Пользователь компьютера Macintosh должен иметь возможность обращаться к ресурсам, поддерживаемым UNIX-системой, а пользователь UNIX должен иметь возможность разделять информацию с пользователями Windows 95. Подавляющее число пользователей ничего не хочет знать о внутренних форматах файлов или о синтаксисе команд UNIX. Пользователь терминала IBM 3270 должен иметь возможность обмениваться сообщениями с пользователями сети персональных компьютеров без необходимости вникать в секреты трудно запоминаемых адресов.

Концепция прозрачности может быть применена к различным аспектам сети. Например, прозрачность расположения означает, что от пользователя не требуется знаний о месте расположения программных и аппаратных ресурсов, таких как процессоры, принтеры, файлы и базы данных. Имя ресурса не должно включать информацию о месте его расположения, поэтому имена типа mashinel : prog.c или \\ftp_serv\pub прозрачными не являются. Аналогично, прозрачность перемещения означает, что ресурсы должны свободно перемещаться из одного компьютера в другой без изменения своих имен. Еще одним из возможных аспектов прозрачности является прозрачность параллелизма, заключающаяся в том, что процесс распараллеливания вычислений происходит автоматически, без участия программиста, при этом система сама распределяет параллельные ветви приложения по процессорам и компьютерам сети. В настоящее время нельзя сказать, что свойство прозрачности в полной мере присуще многим вычислительным сетям, это скорее цель, к которой стремятся разработчики современных сетей.

Компьютерные сети изначально предназначены для совместного доступа пользователя к ресурсам компьютеров: файлам, принтерам и т. п. Трафик, создаваемый этими традиционными службами компьютерных сетей, имеет свои особенности и существенно отличается от трафика сообщений в телефонных сетях или, например, в сетях кабельного телевидения. Однако 90-е годы стали годами проникновения в компьютерные сети трафика мультимедийных данных, представляющих в цифровой форме речь и видеоизображение. Компьютерные сети стали использоваться для организации видеоконференций, обучения и развлечения на основе видеофильмов и т. п. Естественно, что для динамической передачи мультимедийного трафика требуются иные алгоритмы и протоколы и, соответственно, другое оборудование. Хотя доля мультимедийного трафика пока невелика, он уже начал свое проникновение как в глобальные, так и локальные сети, и этот процесс, очевидно, будет продолжаться с возрастающей скоростью.

Главной особенностью трафика, образующегося при динамической передаче голоса или изображения, является наличие жестких требований к синхронности передаваемых сообщений. Для качественного воспроизведения непрерывных процессов, которыми являются звуковые колебания или изменения интенсивности света в видеоизображении, необходимо получение измеренных и закодированных амплитуд сигналов с той же частотой, с которой они были измерены на передающей стороне. При запаздывании сообщений будут наблюдаться искажения.

В то же время трафик компьютерных данных характеризуется крайне неравномерной интенсивностью поступления сообщений в сеть при отсутствии жестких требований к синхронности доставки этих сообщений. Например, доступ пользователя, работающего с текстом на удаленном диске, порождает случайный поток сообщений между удаленным и локальным компьютерами, зависящий от действий пользователя по редактированию текста, причем задержки при доставке в определенных (и достаточно широких с компьютерной точки зрения) пределах мало влияют на качество обслуживания пользователя сети. Все алгоритмы компьютерной связи, соответствующие протоколы и коммуникационное оборудование были рассчитаны именно на такой «пульсирующий» характер трафика, поэтому необходимость передавать мультимедийный трафик требует внесения принципиальных изменений как в протоколы, так и оборудование. Сегодня практически все новые протоколы в той или иной степени предоставляют поддержку мультимедийного трафика.

Особую сложность представляет совмещение в одной сети традиционного компьютерного и мультимедийного трафика. Передача исключительно мультимедийного трафика компьютерной сетью хотя и связана с определенными сложностями, но вызывает меньшие трудности. А вот случай сосуществования двух типов трафика с противоположными требованиями к качеству обслуживания является намного более сложной задачей. Обычно протоколы и оборудование компьютерных сетей относят мультимедийный трафик к факультативному, поэтому качество его обслуживания оставляет желать лучшего. Сегодня затрачиваются большие усилия по созданию сетей, которые не ущемляют интересы одного из типов трафика. Наиболее близки к этой цели сети на основе технологии АТМ, разработчики которой изначально учитывали случай сосуществования разных типов трафика в одной сети.

Управляемость сети подразумевает возможность централизованно контролировать состояние основных элементов сети, выявлять и разрешать проблемы, возникающие при работе сети, выполнять анализ производительности и планировать развитие сети. В идеале средства управления сетями представляют собой систему, осуществляющую наблюдение, контроль и управление каждым элементом сети — от простейших до самых сложных устройств, при этом такая система рассматривает сеть как единое целое, а не как разрозненный набор отдельных устройств.

Хорошая система управления наблюдает за сетью и, обнаружив проблему, активизирует определенное действие, исправляет ситуацию и уведомляет администратора о том, что произошло и какие шаги предприняты. Одновременно с этим система управления должна накапливать данные, на основании которых можно планировать развитие сети. Наконец, система управления должна быть независима от производителя и обладать удобным интерфейсом, позволяющим выполнять все действия с одной консоли.

Решая тактические задачи, администраторы и технический персонал сталкиваются с ежедневными проблемами обеспечения работоспособности сети. Эти задачи требуют быстрого решения, обслуживающий сеть персонал должен оперативно реагировать на сообщения о неисправностях, поступающих от пользователей или автоматических средств управления сетью. Постепенно становятся заметны более общие проблемы производительности, конфигурирования сети, обработки сбоев и безопасности данных, требующие стратегического подхода, то есть планирования сети. Планирование, кроме этого, включает прогноз изменений требований пользователей к сети, вопросы применения новых приложений, новых сетевых технологий и т. п.

Полезность системы управления особенно ярко проявляется в больших сетях: корпоративных или публичных глобальных. Без системы управления в таких сетях нужно присутствие квалифицированных специалистов по эксплуатации в каждом здании каждого города, где установлено оборудование сети, что в итоге приводит к необходимости содержания огромного штата обслуживающего персонала.

В настоящее время в области систем управления сетями много нерешенных проблем. Явно недостаточно действительно удобных, компактных и многопротокольных средств управления сетью. Большинство существующих средств вовсе не управляют сетью, а всего лишь осуществляют наблюдение за ее работой. Они следят за сетью, но не выполняют активных действий, если с сетью что-то произошло или может произойти. Мало масштабируемых систем, способных обслуживать как сети масштаба отдела, так и сети масштаба предприятия, — очень многие системы управляют только отдельными элементами сети и не анализируют способность сети выполнять качественную передачу данных между конечными пользователями сети.

Совместимость или интегрируемость означает, что сеть способна включать в себя самое разнообразное программное и аппаратное обеспечение, то есть в ней могут сосуществовать различные операционные системы, поддерживающие разные стеки коммуникационных протоколов, и работать аппаратные средства и приложения от разных производителей. Сеть, состоящая из разнотипных элементов, называется неоднородной или гетерогенной, а если гетерогенная сеть работает без проблем, то она является интегрированной. Основной путь построения интегрированных сетей — использование модулей, выполненных в соответствии с открытыми стандартами и спецификациями.

Качество работы сети характеризуют следующие свойства: производительность, надежность, совместимость, управляемость, защищенность, расширяемость и масштабируемость.

Существуют два основных подхода к обеспечению качества работы сети. Первый — состоит в том, что сеть гарантирует пользователю соблюдение некоторой числовой величины показателя качества обслуживания. Например, сети frame relay и АТМ могут гарантировать пользователю заданный уровень пропускной способности. При втором подходе (best effort) сеть старается по возможности более качественно обслужить пользователя, но ничего при этом не гарантирует.

К основным характеристикам производительности сети относятся: время реакции, которое определяется как время между возникновением запроса к какому-либо сетевому сервису и получением ответа на него; пропускная способность, которая отражает объем данных, переданных сетью в единицу времени, и задержка передачи, которая равна интервалу между моментом поступления пакета на вход какого-либо сетевого устройства и моментом его появления на выходе этого устройства.

Для оценки надежности сетей используются различные характеристики, в том числе: коэффициент готовности, означающий долю времени, в течение которого система может быть использована; безопасность, то есть способность системы защитить данные от несанкционированного доступа; отказоустойчивость — способность системы работать в условиях отказа некоторых ее элементов.

Расширяемость означает возможность сравнительно легкого добавления отдельных элементов сети (пользователей, компьютеров, приложений, сервисов), наращивания длины сегментов сети и замены существующей аппаратуры более мощной.

Масштабируемость означает, что сеть позволяет наращивать количество узлов и протяженность связей в очень широких пределах, при этом производительность сети не ухудшается.

Прозрачность — свойство сети скрывать от пользователя детали своего внутреннего устройства, упрощая тем самым его работу в сети.

Управляемость сети подразумевает возможность централизованно контролировать состояние основных элементов сети, выявлять и разрешать проблемы, возникающие при работе сети, выполнять анализ производительности и планировать развитие сети.

Совместимость означает, что сеть способна включать в себя самое разнообразное программное и аппаратное обеспечение.

Author: admin